
NRL Memorandum Report:

Gradually DropIn Layers to Train Very Deep Neural Networks:
Theory and Implementation

Leslie N. Smith
Information Technology Division

Navy Center for Applied Research into Artificial Intelligence
U.S. Naval Research Laboratory

4555 Overlook Ave., SW., Washington, D.C. 20375

Emily M. Hand
University of Maryland

College Park, MD 20742

Timothy Doster
Optical Sciences Division

Applied Optics Branch
U.S. Naval Research Laboratory

4555 Overlook Ave., SW., Washington, D.C. 20375

David Aha
Information Technology Division

Navy Center for Applied Research into Artificial Intelligence
U.S. Naval Research Laboratory

4555 Overlook Ave., SW., Washington, D.C. 20375

March 10, 2016

Contents

1 Introduction . 1
2 Related Work . 1

2.1 Initialization of Network Weights . 2
2.2 Developing New Architecture . 2
2.3 Regularizing the Network . 2

3 DropIn Method . 3
3.1 Model Description . 3
3.2 Implementation . 4

4 Experiments . 4
4.1 MNIST . 6
4.2 CIFAR-10 . 7
4.3 ImageNet / AlexNet . 9
4.4 ImageNet / VGG . 11
4.5 Using DropIn for Regularization . 13

5 How to Easily Determine a Good Architecture . 14
6 Discussion & Conclusion . 14

Appendix . 18
A Resize . 18
B DropIn . 21
C Solver Parameters . 24

1

List of Figures

1 Diagram of traditional vs DropIn training method . 3
2 Classification accuracy while training LeNet(10) + DropIn architecture with MNIST data 5
3 Classification accuracy while training LeNet(2N) + DropIn , for N = 5, 15, 25, 35 with MNIST data . 6
4 Test data classification accuracy while training the 11 layer CIFAR-10 architecture with DropIn . . . 8
5 Classification accuracy while training 11-layer CIFAR-10 architecture with DropInon CIFAR10 data . 8
6 Comparison of various DropIn lengths, d . 10
7 Validation data classification accuracy while training the VGG16 + DropIn architecture with ImageNet

data. 13
8 Classification accuracy while training Alexnet with and without dropin and dropout 14

2

List of Tables

1 Network architecture for LeNet and LeNet(2N)+ DropIn . 5
2 CIFAR-10 11-layer architecture, including DropIn units . 7
3 Final accuracy results for the 11-layer CIFAR-10 network with DropIn with CIFAR-10 data 9
4 Comparison of DropIn and dropin length . 9
5 Network architecture for AlexNet and modified version of AlexNet, AlexNet (13 layers) + DropIn . . 10
6 Comparison of DropIn and dropin lengths, d . 11
7 Network architectures for VGG8, VGG16, and VGG16 + DropIn 12
8 DropIn regularization results . 13

3

Abstract

We introduce the concept of dynamically growing a neural network during training. In particular, an untrainable deep
network starts as a trainable shallow network and newly added layers are slowly, organically added during training,
thereby increasing the network’s depth. This is accomplished by a new layer, which we call DropIn. The DropIn layer
starts by passing the output from a previous layer (effectively skipping over the newly added layers), then increasingly
including units from the new layers for both feedforward and backpropagation. We show that deep networks, which are
untrainable with conventional methods, will converge with DropIn layers interspersed in the architecture. In addition,
we demonstrate that DropIn provides regularization during training in an analogous way as dropout. Experiments are
described with the MNIST dataset and various expanded LeNet architectures, CIFAR-10 dataset with its architecture
expanded from 3 to 11 layers, and on the ImageNet dataset with the AlexNet architecture expanded to 13 layers and
the VGG 16-layer architecture.

1 Introduction
Over the past couple of years, state-of-the-art results for image recognition [13, 26, 19], object detection [5], face
recognition [27], speech recognition [7], machine translation [25], image caption generation [28], driverless car tech-
nology [11], and other applications [14] have required increasingly deeper neural networks.

Network depth refers to the number of layers in the architecture. It is well known that adding layers to neural
networks makes them more expressive [15]. Each year, the Imagenet Challenge [18] is held in which teams are
expected, given an image, to detect, localize, or recognize an object in the image. Deep convolutional neural networks
(CNN) have dominated the competition since Krizhevsky et al.won in 2012 [13] and each year since the winner of the
competition used a deeper network than the previous year’s winner [18, 19, 26], e.g. the winner in 2012 used 8 layers
while in 2014 the winner used 19 layers.

However, training a very deep network is a difficult and open research problem [4, 6, 22]. It is difficult to train
very deep networks because the error norm during backpropagation can grow or vanish exponentially. In addition,
very large training datasets are necessary when the network has millions or billions of weights.

Here we suggest a dynamic architecture that grows during the training process and allows for the training of very
deep networks. We illustrate this with our DropIn layer, where new layers are skipped at the start of the training,
as though they were not present. This allows the weights of the included layers to start converging. Over a number
of iterations the DropIn layer increasingly includes activations from the inserted layers, which gradually trains the
weights in theses added layers.

DropIn follows the philosophy embedded within curriculum learning [2]. With curriculum learning one starts with
an easier problem and incrementally increases the difficulty. Here too, one starts training a shallow architecture and
after convergence begins, DropIn incrementally modifies the architecture to slowly include units from the new layers.

In addition, DropIn can be used in a mode analogous to dropout [20] for the regularization of a deep neural network.
Instead of setting random activations to zero as is done in dropout, DropIn set’s the activations to that of the previous
layer leading to a more robust trained network. This provides some of the benefits from regularization that dropout
offers. In this report we demonstrate that the “noise” from mixing the activations from previous layers provides some
regularization during training. In addition, both DropIn and dropout can be viewed as training a large collection of
networks with varied architectures and extensive weight sharing.

The contributions of this report are:

1. Introduction of a dynamic architecture that grows or shrinks during the training.

2. The specifics of the DropIn layer for both enabling the training of very deep networks and for regularization
during training. Also, a Resize layer is described to enable using DropIn even when the size of the input layers
are different.

3. Examples of successfully training deep architectures that cannot be trained with conventional methods on
MNIST, CIFAR-10, and ImageNet.

4. It is demonstrated that DropIn provides regularization during training.

5. A method to discover an optimal architecture for a given application and dataset.

6. Code is provide for reproducibility of this research.

2 Related Work
There has been a limited amount of work in recent years on how to train very deep networks. Methods for training
very deep networks have centered on initialization of the network weights or developing new architectures and DropIn
is in the latter category. We will now provide a brief review of the current state of initialization of network weights,
new architecture for very deep networks, and regularization of networks. We will also mention how DropIn relates to
these methods.

1

2.1 Initialization of Network Weights
Sutskever et al.[24] investigate the difficulty in training deep networks and conclude that both proper initialization and
momentum are necessary. Glorot and Bengio [6] recommend an initialization method called “normalized initializa-
tion” to allow the training of deep networks. In this method weights are chosen from a distribution

W ∼ U [−6/
√
nj + nj+1, 6/

√
nj + nj+1]

such that the activation variance and the backpropagation variance are maintained throughout the network. Using
normalized initialization improved convergence. He et al.[8] recently improved upon the “normalized initialization”
method by changing the distribution to take into account ReLU layers.

Hinton [9] proposed first training layer by layer in an unsupervised fashion so that a transformed version of the
input could be realized. This method is able to capture the main variation of the input layer by layer. Finally supervised
finetuning occurs, which has been setup to converge more easily by the pretraining phase. Erhan [4] would go on later
to characterize the mathematics of the unsupervised pre-training and offer an explanation for its success.

Sussillo and Abbott [23] suggest an initialization scheme called “Random Walk Initialization” based on scaling the
initial random matrices correctly. By multiplying the error gradient by a correctly scaled random matrix at each layer
an unbiased random walk is formed. It can shown that the variance of the random walk grows only linearly with the
depth of the network and thus the growing backpropagation error can be handled by increasing the size of the layers.
This is one of only a few papers that show the results of experiments with networks consisting of hundreds of layers.
The results in this paper indicated that just adding layers does not necessarily improve accuracy results, which we also
found to be true.

2.2 Developing New Architecture
Raiko, et al.[16] introduce the concept of skip connections by adding a linear transformation to the usual non-linear
transformation of the input to a unit. Skip-connections separate the linear and non-linear portions of the activations
and allow the linear part to “skip” to higher layers. This is similar to DropIn in some ways, but the purpose of
DropIn differs from that of skip connections, and DropIn does not need to learn any parameters. Furthermore, the skip
connection experiments in their paper are with MNIST and CIFAR-10 datasets, which are shallow compared to the
deep networks considered here.

Romero et al.[17] suggest training a thin, deep student network (called a fitnet) from a larger but shallower teacher
network. The authors accomplish this by utilizing the output of the teacher’s hidden layers as a hint for the student’s
hidden layers.

Srivastava et al.[21, 22] propose a new architecture that they named “Highway Networks” where the output of a
layer’s neuron contains a combination of the input and the output. Highway networks use carry gates inspired by long
short-term memory (LSTM) recurrent neural networks (RNNs) to regulate how much of the input is carried to the next
layer. The authors state that network depth is crucial for the recent success of neural networks and demonstrate that
their structure permits training networks of hundreds of layers [21, 22] (up to 900 layers). These new parameters are
learned along with the other parameters of the network. Zhang et al.[32] applied highway networks to LSTM recurrent
neural networks. DropIn is a simpler approach than highway networks as it does not contain gates or their parameters,
which need to be learned - which can result in a substantial savings of computation and storage.

Breuel [3] discusses a dynamic network that he describes as a biologically plausible “reconfigurable” network. In
this network different units are more or less heavily weighted dynamically to produce different configurations and in
this way a single network can perform multiple tasks. In other words, it is as though a network is composed of different
classifiers, each implemented by a different configuration and each configuration is created by a control mechanism
that sets an additional group of parameters. DropIn represents a different type of dynamic network that grows during
training rather than reconfigures for each task.

2.3 Regularizing the Network
The well-known dropout [10, 20] method is an effective means to improve the training of deep neural networks.
During training dropout randomly zeros a neuron’s output activation with a probability p, called the dropout ratio,
so that the network cannot rely on a particular configuration. This reduces overfitting to the training data and the

2

resulting network is more robust and better generalizes to unseen data. While dropout “samples from an exponential
number of different ‘thinned’ networks” [20], DropIn samples from an exponential number of different thinner and
shallower sub-networks. Like dropout, DropIn randomly changes the configuration so that the network cannot rely on
a particular configuration.

The paper “Understanding Dropout” by Baldi and Sadowski [1] provides a theoretical basis for understanding
dropout. The authors demonstrate that dropout is an approximation to averaging a large ensemble of networks, regu-
lates the training, and prevents overfitting. A similar theoretical understanding and benefits can also apply to DropIn.

Wan et al.[29] suggest DropConnect, which randomly sets a subset of weights to zero (in contrast to randomly
setting a subset of activations to zero, as is done by dropout). A recent paper by Wu et al.[30] suggests an interesting
modification to dropout that they call split dropout. In each iteration, instead of zeroing activations or weights, they
create two random, thinned sub-networks each iteration and train each separately.

Figure 1: Diagram of traditional vs DropIn training method. The DropIn method sends activations from Layer `− 1
to Layer `+ 1 (thus skipping Layer `) with a ratio q = 1− p and from Layer ` to Layer `+ 1 with a ratio p. (Best if
viewed in color)

3 DropIn Method
In this section we provide a mathematical basis for DropIn as well as some implementation details.

3.1 Model Description
There are two modes of running DropIn: first to gradually include skipped layers, which we refer to as gradual DropIn,
and second as a regularizer, which we named regularizing DropIn. Figure 1 provides a visual reference as to how the
DropIn unit works.

Gradual DropIn initially passes on only the activations from the previous layer, effectively skipping the new layers.
For each iteration number, τ , the ratio p is computed as p = τ/d for DropIn length d, which is the number of
iterations over which q = 1 − p reduces from 1 to 0. Then the number of activations copied from layer `− 1 drops
as q × n = (1 − p) × n, where n is the total number of activations in the layer `− 1. The remaining activations are
accepted from the new layer ` and backpropagation trains the weights of these newly added units.

For regularizing DropIn, the DropIn probability ratio p is set to a static value in [0, 1]. In this case, DropIn works
analogously with dropout but instead of setting values to zero, they are set to the activations of a previous layer (e.g.,
`− 1). The choice of which activations come from which layer is done in an evolving random fashion each iteration.

We follow the notation in the dropout paper [20] to show this more formally. Namely, we start with a neural
network composed of some number of layers, L, where ` ∈ [1, 2, ...L] is the layer index. Also, y(`) represents the

3

vector of outputs from layer ` and is the input to the next layer `+ 1. Let x be the data input to the first layer. In
addition, W(`) and b(`) are the weights and biases at layer `. To allow us to track the evolving nature of the network,
we include the training iteration number, τ , and the layer’s unit index number, λ(`).

The first equation for gradual DropIn (in the first mode where layers are slowly added) is a vector of zeros then
ones, which is designated as r(`)(τ, λ) for each iteration:

r(`)(τ, λ) =

{
0 λ < Ω

1 otherwise,
(1)

where Ω = min {0, p× n}. For regularizing DropIn, the equation for r(`)(τ, λ(`)) with a probability ratio p is:

r(l)(τ, ·) ∼ Bernoulli(p), (2)

i.e., a 0-1 vector where each value is distributed as a Bernoulli random variable with probability p.
Once r is set, the remaining equations (dropping τ and λ(`) for simplicity) are the same for both modes – namely

for layer `+ 1:
ỹ(`) = r(`) × y(`) (3)

z
(`+1)
i = w

(`+1)
i ỹ(`) + b

(`+1)
i (4)

y(`+1) = f(z
(`)
i) + (1− r(`))y(ˆ̀), (5)

where ˆ̀ is any layer less than layer `+ 1.
These equations are similar to those for dropout, except instead of some of the outputs being zero, they are set to the

values from the previous layer, y(ˆ̀). In Section 4.5 we look at whether DropIn offers some of the same regularization
benefits as dropout.

3.2 Implementation
We implemented our code in Caffe [12] by creating a new layer called DropIn. The parameters for the DropIn layer
(see Appendix B) include top, the top layer, bottom, a vector containing the bottom layer and the previous bottom
layer, a dropin ratio, which is the ratio q = 1.0 − p in Figure 1, and a dropin length, which is the number of
iterations over which to q goes from 1.0 to 0.0 (i.e., it is d described in Section 3.1).

Since DropIn requires that the size of both the bottom layer and the previous bottom layer be the same, we also
implemented a Resize layer (see Appendix A) to allow reshaping a layer to a user-specified size. The Resize layer
modifies its input, which is y(ˆ̀), into a user-specified height, width, and number of channels/filters. The parameters are
num, channels, height, width, and back, where num is the batch size, channels is the number of filters, height
and width are the height and width of the filters respectively, and back is a boolean indicating if the resize is for
back propagation. Since Caffe treats data as blobs, the actual method which performs the resizing is is added to the
Blob class in Caffe. The bulk of the processing takes place in the actual Blob resize method. The Resize layer is
implemented for CPU only because we found that using GPU for resize was actually slower than CPU because data
needed to be copied back and forth between CPU memory and GPU memory, making the overall process slower. The
Resize layer copies the input layer, calls the blob resize method, and returns the resized blob as the output. The Resize
layer allows DropIn to work with any two layers, even when the sizes of y(`) and y(ˆ̀) are different.

4 Experiments
The purpose of this section is to demonstrate the effectiveness of DropIn on several standard datasets but with deeper
architectures. We trained DropIn networks on a variety of problems, in particular ones where the deep architecture was
not trainable with standard methods. No attempt was made to optimize the architecture or hyper-parameters for higher
accuracy because our main objective was to show that a deep architecture that will not converge without DropIn, will
converge with it. However, the results in Sections 4.3 and 4.4 also demonstrate an increase in accuracy by using a
deeper network for Imagenet.

4

LeNet LeNet(2N) + DropIn
data (28× 28)

conv1 1-20(5× 5) conv1 1-20(5× 5)
conv1 2-20(3× 3)
dropin (1 1 + 1 2)
conv1 3-20(3× 3)
dropin (1 2 + 1 3)

...
conv1 N-20(3× 3)

dropin (1 (N-1) + 1 N)
maxpool(2× 2)

conv2 1-50(5× 5) conv2 1-50(5× 5)
conv2 2-50(3× 3)
dropin (2 1 + 2 2)
conv2 3-50(3× 3)
dropin (2 2 + 2 3)

...
conv2 N-50(3× 3)

dropin (2 (N-1) + 2 N)
maxpool(2× 2)

fc3-500
fc4-10

soft-max

Table 1: Network architecture for LeNet and LeNet(2N)+ DropIn.

Figure 2: Classification accuracy while training LeNet(10) + DropIn architecture with MNIST data. Curves represent
different DropIn lengths, d. (Best viewed in color)

In the subsections below, DropIn is used for training CNN architectures with the MNIST, and CIFAR-10 datasets,
plus a modified AlexNet [13] with 13 layers and the VGG [19] architectures with the ImageNet dataset. These
cases cover a range of data and architecture sizes. We found that in all cases DropIn permitted training an otherwise
untrainable architecture.

All of the following experiments were run with Caffe (downloaded August 31, 2015) using CUDA 7.0 and Nvidia’s

5

(a) DropIn length of 2,500

(b) DropIn length of 7,500

Figure 3: Classification accuracy while training LeNet(2N) + DropIn , forN = 5, 15, 25, 35 with MNIST data. Curves
represent different network depths. (Best viewed in color)

CuDNN. The experiments described in this section were run on a 64 node cluster with 8 Nvidia Titan Black GPUs,
128 GB memory, dual Intel Xenon E5-2620 v2 CPUs, and 56 Gbps FDR InfiniBand (IB) per node.

The following subsections depict, in table form, the structure of several networks. We use the naming convention
{layer type}{layer number}-{number of outputs}(filter size). For example, conv1 2-32(5 × 5) represents a convolu-
tional layer numbered 1 2 with 32 outputs and filters sized 5 × 5. DropIn layers are denoted as dropin (` + (` + 1)),
as depicted in Figure 1.

4.1 MNIST
This dataset consists of 70,000 grey-scale images with a resolution of 28x281. Of these, 60,000 are for training and
10,000 are for testing. There are ten classes, each a different handwritten digit from zero to nine, with 7,000 images per
class. The standard network architecture for the classification of MNIST, provided in the Caffe package, is the 4-layer

1http://yann.lecun.com/exdb/mnist/

6

http://yann.lecun.com/exdb/mnist/

LeNet consisting of 2 convolutional/max-pooling layers followed by 2 fully-connected layers (see the first column of
Table 1 for details). Inspired by the work in [22], we increased the number of convolutional layers from two to 2N,
which we denote as LeNet(2N). These added layers (as seen in the second column of Table 1, minus the DropIn layers
shown in red) learned a 3×3 convolution filter but did not change the size of the outputs. We then added DropIn layers
between each of the convolutional layers (as seen in the second column of Table 1) and called this network LeNet(2N)
+ DropIn.

We first looked atN = 5 and created LeNet(10) and LeNet(10) + DropIn architectures. LeNet(10) did not converge
in the standard training time of 10,000 iterations given multiple realizations of the training process. However, utilizing
DropIn units we were able to have LeNet(2N) + DropIn converge 10,000 iterations with the same hyper-parameters.
In Figure 2 we show results for several different DropIn lengths for this network. These different lengths indicate the
robustness of the DropIn length for simpler networks and that, in general, shorter DropIn lengths provide marginally
better results. We note for this case that the added layers do not increase the overall accuracy of the network, as
the MNIST data is quite simple compared with other classification tasks; the added layers do not provide any extra
differentiation power.

We now look at how the number of layers affects the training with DropIn. In Figure 3 there are two different
plots, one with DropIn length of 2,500 iterations and the other with DropIn length of 7,500 iterations. For each plot
we present 4 different networks with 10, 30, 50, and 70 convolutional layers (equating to N=5, 15, 25, 35). For both
DropIn lengths and all four network depths, the gradual DropIn method allowed the networks to converge. The deeper
networks require a greater number of iterations to reach the same level of accuracy as the shallower networks, which
is to be expected as they have a greater number of weights to train. We also see that networks converge more quickly
with the shorter DropIn length, indicating that shorter DropIn lengths are desirable.

CIFAR-10 CIFAR-10(11 layers) + DropIn
data (32× 32× 3)

conv1-32(5× 5) conv1 1-32(5× 5) + LRN
maxpool(2× 2) conv1 2-32(5× 5) + LRN

LRN dropin (1 1 + 1 2)
conv2-32(5× 5) conv2 1-32(5× 5) + LRN
maxpool(2× 2) conv2 2-32(5× 5) + LRN

LRN dropin (2 1 + 2 2)
conv3 1-32(5× 5) + LRN
conv3 2-32(5× 5) + LRN

dropin (3 1 + 3 2)
conv4 1-32(5× 5) + LRN
conv4 2-32(5× 5) + LRN

dropin (4 1 + 4 2)
conv5 1-32(5× 5) + LRN
conv5 2-32(5× 5) + LRN

dropin (5 1 + 5 2)
conv3-64(3× 3) conv6 1-64(3× 3)

maxpool(2× 2)
fc-10

soft-max
accuracy

Table 2: CIFAR-10 11-layer architecture, including DropIn units. The layers follow the naming convention,
{type}{layer number}{ sublayer number}-{number of outputs}{filter size}.

4.2 CIFAR-10
This dataset consists of 60,000 color images with a resolution of 32x32. Of these, 50,000 are for training and 10,000
are for testing. There are ten classes with 6,000 images per class.

7

Figure 4: The curves show classification accuracies for no scaling and with scaling and different dropin mxscale
values. (Best if viewed in color)

Figure 5: Test data classification accuracy while training the 11-layer CIFAR-10 architecture with DropIn. The curves
show classification accuracies for different dropin lengths, d. (Best viewed in color)

The Caffe [12] website provides a CIFAR-10 tutorial that we assumed to be a fairly standard architecture and
hyper-parameter settings. These architecture and hyper-parameter files are available from the Caffe website 2 and
were used here as a starting point.

The three convolutional layer architecture trains quickly and attains good accuracies. The convolutional layers
were replicated to obtain an 11-layer model, which corresponds to the depth of one of the CIFAR-10 models in the
experiments for highway networks [22]. The detailed architectures are compared in Table 2. As shown in the table, the

2http://caffe.berkeleyvision.org/gathered/examples/cifar10.html

8

Architecture dropin length Accuracy (%)
3-layer net 81.4

11-layer net 8,000 81.7
11-layer net 16,000 82.3
11-layer net 24,000 82.3

Table 3: Final accuracy (average of last three values) results for the CIFAR-10 dataset on test data at the end of the
training. Comparison of DropIn and dropin lengths.

Architecture dropin length Accuracy (%)
3 layer net 81.4
11 layer net 8,000 82.2
11 layer net 16,000 82.0
11 layer net 24,000 81.5

Table 4: Comparison of DropIn and dropin length. The table shows accuracy results for the CIFAR-10 dataset on test
data at the end of the training.

sizes of each of the layers entering the DropIn layer were kept the same for simplicity. For every convolutional layer,
the weight initialization was Gaussian with standard deviation of 0.01 and the bias initialization was constant, set to
0. Each convolutional layer was followed by a rectified linear unit and local normalization. The parameters for every
local normalization were local size = 3, alpha = 5× 10−5, beta = 0.75, and norm region = WITHIN CHANNEL. The
length of the training, the learning rates, and schedule were modified to run over 32,000 iterations. This modification
trained satisfactorily and provided a reasonable comparison. The full solver.prototxt file can be seen in Appendix C.

Numerous attempts to train this 11 layer network without the DropIn layers (as indicated in in Table 2) failed to
start converging. On the other hand, similar attempts to train this network with the DropIn layers following every even
numbered layer did successfully converge, which is the primary result of this study.

In addition, experiments were performed on the two DropIn parameters; dropin length and dropin mxscale. Scal-
ing was included into the study because it is used with dropout but DropIn does not have the same justification for
having scaling. It was found that scaling without limitation caused divergences to appear near when the probability
ratios p and q were close to 0 or 1 because the scaling is proportional to the inverse of these ratios. Hence the scale
factors were limited by a user specified factor, dropin mxscale, as follows: scale = min(dropin mxscale, 1/p). And
Figure 4, which compares DropIn with no scaling to the cases with scaling but limited by dropin mxscale, confirms
that scaling is not necessary. In this Figure, the dropin length was fixed at 18,000 iterations and dropin mxscale was
set to 1.0, 2.0, or 3.0.

Figure 5 shows the accuracy curves for dropin length = 8, 000, 16, 000, 24, 000, and Table 4 compares the final
accuracies. The final accuracies show a marginal improvement for longer lengths but for CIFAR-10 the results are
relatively independent of the length value. Furthermore, the final accuracies from the 11-layer architecture are less than
1% better than the original 3-layer architecture, which implies that for the CIFAR-10 dataset, the deeper networker
provides only marginal improvement.

4.3 ImageNet / AlexNet
ImageNet3 [18] is a large image database based on the nouns in the WordNet hierarchy. This image database used for
the ImageNet Large Scale Visual Recognition Challenge and is commonly used as a basis of comparison in the deep
learning literature. The database contains 1.2 million training and 50,000 testing images covering 1,000 categories.

Fortunately, the Caffe website provides the architecture and hyper-parameter files for a slightly modified AlexNet4.
We downloaded the architecture and hyper-parameter files from the website and we expanded the architecture from 8
layers to 13 layers by duplicating each of the convolutional layers, which is shown (minus the DropIn layers shown

3www.image-net.org/
4caffe.berkeleyvision.org/gathered/examples/imagenet.html

9

www.image-net.org/
caffe.berkeleyvision.org/gathered/examples/imagenet.html

AlexNet AlexNet (13 layers) + DropIn
data (227× 227× 3)

conv1 1-96(11× 11) conv1 1-96(11× 11)
conv1 2-96(11× 11)

dropin (1 1 + 1 2)
maxpool(2× 2) + LocalNorm

conv2 1-256(5× 5) conv2 1-256(5× 5)
conv2 2-256(5× 5)
dropin (2 1 + 2 2)

maxpool(2× 2) + LocalNorm
conv3 1-384(3× 3) conv3 1-384(3× 3)

conv3 2-384(3× 3)
dropin (3 1 + 3 2)

conv4 1-384(3× 3) conv4 1-384(3× 3)
conv4 2-384(3× 3)
dropin (4 1 + 4 2)

conv5 1-256(3× 3) conv5 1-256(3× 3)
conv5 2-256(3× 3)
dropin (5 1 + 5 2)

maxpool(2× 2)
fc6-4096
fc7-4096
fc8-1000
soft-max

Table 5: Network architecture for AlexNet and modified version of AlexNet, AlexNet (13 layers) + DropIn . The
layers follow the naming convention, {type}{layer number}{ sublayer number}-{number of outputs}{filter size}.

Figure 6: Comparison of various DropIn lengths, d. Validation data classification accuracy while training the AlexNet
(13 layers) + DropIn architecture with ImageNet data. (Best viewed in color)

10

Architecture dropin length Accuracy (%)
AlexNet 58.0

13 layers + DropIn 25,000 62.2
13 layers + DropIn 75,000 62.1
13 layers + DropIn 150,000 60.8
13 layers + DropIn 300,000 59.3

Table 6: Comparison of DropIn and dropin lengths, d. The table shows final accuracy (average of last three values)
results for the ImageNet dataset on validation data at the end of the training.

in red) in columns 1 and 2, respectively, of Table 5. The AlexNet (13 layers) + DropIn includes a DropIn layer
between every duplicated layer used to create AlexNet (13 layers). Multiple attempts at training the AlexNet (13
layers) architecture in the conventional manner did not converge. In the training results reported in this section, all
weights were initialized the same so as to avoid differences due to different random initializations. In the tests with
the expanded architecture, the hyper-parameters were kept the same as provided by the Caffe website (even though
our experiments with DropIn indicate that tuning them could improve the results, we left this for future work). In
particular, the best learning rate and schedule is likely different so future work will include comparison with optimized
hyper-parameters.

Experiments were run varying the DropIn hyper-parameter dropin length. Table 6 shows final accuracy results
after training for 450,000 iterations with a range of lengths. Figure 6 compares the accuracy during training of these
experiments. In contrast to the results with CIFAR-10, the DropIn length makes a difference with ImageNet. We
believe that this is because the deeper architecture increases the classification accuracy for larger datasets, hence the
improvement with smaller DropIn lengths is more prominent.

From Figure 6 and Table 6, we can conclude that shorter lengths are better than the longer ones. If the length is
less than the first scheduled drop in the learning rate at iteration 100,000, then the network is better trained. However,
the difference between dropin length = 75, 000 and 25,000 is negligible implying that lengths less than the first
scheduled learning rate drop are equivalent.

4.4 ImageNet / VGG
VGGn, a set of networks created by the Visual Geometry Group [19], won second place in the image classification
category of the 2014 ImageNet contest. These networks, trained on the same database as the Alexnet architecture
discussed in Section 4.3, contained n = 11, 13, 16, or 19 layers. In Table 7 we see the VGG16 (minus the DropIn
layers shown in red) architecture alongside what we will refer to as VGG8 (not contained in the original paper). All
convolutional layers have a stride and padding of 1 and maxpooling layers have a stride of 2. In their paper, the authors
describe the difficulty of training these deep networks and utilized a weight transfer method to enable the network to
converge during training.

In their paper the authors describe the difficulty of training these deep networks and utilized a weight transfer
method:

The initialisation of the network weights is important, since bad initialisation can stall learning due to the
instability of gradient in deep nets. To circumvent this problem, we began with training the configuration
A (Table 1) [VGG13], shallow enough to be trained with random initialisation. Then, when training
deeper architectures, we initialised the first four convolutional layers and the last three fullyconnected
layers with the layers of net A (the intermediate layers were initialised randomly).

While it is possible to train a deep neural network by first training a shallow network and using those weights to
initialize the deeper network, we believe that in addition to being easier, training the full network with all the layers
in place leads to a better trained network. This is supported by research on feature visualization, such as in Zeiler and
Fergus [31], where they demonstrate that higher layers have more abstract representations. Training in place means
that the learned representations will conform well to the representation at a given layer, while training a shallow
network and initializing the weights of a deeper network might not. Our future work includes comparing using DropIn
to initializing the weights from training a separate shallow network.

11

VGG8 VGG16 VGG16 + DropIn
data (224× 224× 3)

conv1 1-64(3× 3) conv1 1-64(3× 3) conv1 1-64(3× 3)
conv1 2-64(3× 3) conv1 2-64(3× 3)

dropin (1 1 + 1 2)
maxpool(2× 2)

conv2 1-128(3× 3) conv2 1-128(3× 3) conv2 1-128(3× 3)
conv2 2-128(3× 3) conv2 2-128(3× 3)

dropin (2 1 + 2 2)
maxpool(2× 2)

conv3 1-256(3× 3) conv3 1-256(3× 3) conv3 1-256(3× 3)
conv3 2-256(3× 3) conv3 2-256(3× 3)

dropin (3 1 + 3 2)
conv3 3-256(3× 3) conv3 3-256(3× 3)

dropin (3 2 + 3 3)
maxpool(2× 2)

conv4 1-512(3× 3) conv4 1-512(3× 3) conv4 1-512(3× 3)
conv4 2-512(3× 3) conv4 2-512(3× 3)

dropin (4 1 + 4 2)
conv4 3-512(3× 3) conv4 3-512(3× 3)

dropin (4 2 + 4 3)
maxpool(2× 2)

conv5 1-512(3× 3) conv5 1-512(3× 3) conv5 1-512(3× 3)
conv5 2-512(3× 3) conv5 2-512(3× 3)

dropin (5 1 + 5 2)
conv5 3-512(3× 3) conv5 3-512(3× 3)

dropin (5 2 + 5 3)
maxpool(2× 2)

fc6-4096
fc7-4096
fc8-1000
soft-max

Table 7: Network architectures for VGG8 and VGG16 + DropIn . The layers follow the naming convention,
{type}{layer number}{ sublayer number}-{number of outputs}{filter size}. See the text for additional settings.

Instead of training smaller networks, we propose to use our gradual DropIn method. For our studies, we utilized
the VGG16 prototxt file referenced on the Caffe website5 and set up the solver file with the appropriate parameters
from the authors’ paper. Using traditional training methods, we were only able to train the VGG8 architecture; the
VGG16 failed to begin converging for multiple realizations. Using VGG8 as a template, we augment VGG16 with
DropIn layers to create VGG16 + DropIn (see Table 7). Due to the number of parameters in the VGG16 architecture
we made use of the multigpu version of caffe by setting the batch size to 12 for 8 K40 GPUs - thus creating a combined
batch size of 96, solver parameters and DropIn lengths were scaled to match this batch size. In Figure 7 we see the
training accuracy results for DropIn of various lengths.

Based on the evidence presented in Section 4.3, we choose to test VGG16 with a DropIn length of 60,000. We
found that other lengths (100,000, 150,000, and 200,000) began to converge as well but with limited time and re-
sources, we chose to report only this length for this report. The results of training VGG16 + DropIn are shown in
Figure 7. We see that with gradual DropIn the difficult to train VGG16 network does converge. Here we see the real
power of the gradual DropIn method; without training an additional shallower network we are able to directly train
VGG16, thus saving effort for the practitioner.

5https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_
deploy-prototxt

12

https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt

Figure 7: Validation data classification accuracy while training the VGG16 + DropIn architecture with ImageNet data.

4.5 Using DropIn for Regularization
The original AlexNet architecture uses dropout for regularization during training in both fully connected layers and
it provides a substantial increase in the network’s accuracy. AlexNet (with 8 layers) provides a means to test DropIn
regularization. For this experiment, three cases were run as shown in Table 8. Case 1 is the original AlexNet.

Case fc6 fc7
1 dropout dropout
2 dropout
3 dropout DropIn

Table 8: The three regularization experiments shows layers with dropout or DropIn . The fully connected layers 6 and
7, are called fc6 and fc7, respectively.

The results from this experiment are shown in Figure 8, where the blue curve is standard AlexNet, the green curve
is without dropout in layer fc7, and the red curve is with DropIn in layer fc7. The dropin ratio and dropout ratio were
0.5 for all of these tests and all the hyper-parameters, such as learning rate, was kept the same.

This figure shows that removing dropout from fc7 causes visible degrading of the accuracy between iterations
150,000 and 200,000 (green curve). This kind of degradation does not happen with DropIn. Instead, the accuracy
curve is similar to the curve with dropout (red versus blue curve) but with a small degradation in overall performance.
We believe this degradation is because a DropIn network is more difficult to train than a dropout network. However,
the final accuracy for the DropIn network is higher than from an architecture without dropout (red versus green curve).
This experiment demonstrates that DropIn provides some regularization since the degradation found in the case without
dropout is absent.

There are two implications from these results. First, using DropIn could be only partially utilizing the fc7 layer
since half of those activations are replaced with fc6 activations. Second, the change to the architecture introduced by
DropIn in fc7 might make it harder to train the network and that the hyper-parameters need to be tuned. Future plans
include tuning the network to determine if the DropIn architecture can produce competitive accuracies to the original
AlexNet.

13

Figure 8: Test of DropIn regularization with AlexNet. Validation data classification accuracy while training AlexNet
architecture with ImageNet data. See text for a discussion.

5 How to Easily Determine a Good Architecture
One of the challenges for deep learning practitioners is to determine good choices for the hyper-parameter values and
the architecture for a given application and dataset. DropIn and dropout provide an easier way to test choices for the
architecture than running a set of experiments with many different architectures.

DropIn and dropout can allow one to test a range of architecture depths and widths, respectively. Since adding
layers does not necessarily increase accuracy, one can run with the gradual DropIn mode to see if there is little effect,
such as in Figures 2 and 5, or visible effect, such as in Figure 6. Substantial improvement implies that there will be
benefit from the additional depth.

Similarly, making a run where the dropout probability ratio varies from perhaps 0.9 to 0.1 (using a slightly modified
dropout) provides guidance on the minimum number of neurons per layer. When decreasing the probability that
neurons are retained (as shown in Figure 9 of Srivastava et al.[20]), the error typically has a range of the probability
ratios where the error plateaus but at some threshold probability the error increases. By multiplying the number of
neurons in a layer by this threshold probability, one can approximately determine the minimum number of neurons
one must retain where there is negligible harm to the accuracy.

One can also start from fully trained weights and fine-tuning while letting the dropout ratio increase (thinner
network) or letting the DropIn ratio increase (shallower network). If the effect on the accuracy is small and there is a
need for computational savings, one can use the thinner and shallower network. If at a certain ratio for either dropout
or DropIn there is an acceleration in the error, this ratio can be used to estimate the minimum depth and neurons per
layer of the architecture for this dataset.

Furthermore, since DropIn and dropout allow for incremental changes to the architecture depth and width, one of
our future research directions is to investigate automatic ways to learn an architecture during training.

6 Discussion & Conclusion
The major result of this report is that deeper architectures that cannot converge using standard training methods,
become trainable by slowly adding in the new layers during the training. In addition, there are indications that DropIn
layers help regularize the training of a network. We found in general that if the shallow network is trainable, then
the deeper network, where additional layers are added by a DropIn layer, is also trainable. However, if the dataset is

14

relatively small, a deeper network might not provide much improvement, as shown with the CIFAR-10 results. With a
large dataset like ImageNet, adding additional layers increases accuracy.

We have not yet explored training with different dropin length values for different DropIn layers in one network.
In addition, comparing DropIn to training by initializing the weights from training a separate shallow network has not
yet been tested; these are planned for future work and will be reported elsewhere. Also, we plan to explore fine tuning
the hyper-parameters for training the deep network with DropIn and to test DropIn within other architectures such as
recurrent neural networks.

Future work also includes training networks with hundreds of layers using asynchronous DropIn, where layers are
added starting at different iterations. In addition, we wish to test training where the entire very deep network is initially
very thin (few parameters to train) and units are added to all the layers during the training. Furthermore, we plan to
study if a methodology can be developed to learn from the data how to automatically optimize the architecture during
training and thus learn to adapt to an application based on its data.

Acknowledgement
The authors express their appreciation to David Bonanno, Sambit Bhattacharya, and Michael Maynord for their sug-
gestions and comments regarding this work. This work was supported by the US Naval Research Laboratory base
program, Recursive Structure Learning.

15

Bibliography

[1] P. Baldi and P. J. Sadowski. Understanding dropout. In Advances in Neural Information Processing Systems,
pages 2814–2822, 2013.

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 41–48. ACM, 2009.

[3] T. M. Breuel. Possible mechanisms for neural reconfigurability and their implications. arXiv preprint
arXiv:1508.02792, 2015.

[4] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The difficulty of training deep architectures
and the effect of unsupervised pre-training. In International Conference on Artificial Intelligence and Statistics,
pages 153–160, 2009.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages
580–587. IEEE, 2014.

[6] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Interna-
tional conference on artificial intelligence and statistics, pages 249–256, 2010.

[7] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings
of the 31st International Conference on Machine Learning (ICML-14), pages 1764–1772, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. arXiv preprint arXiv:1502.01852, 2015.

[9] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation,
18(7):1527–1554, 2006.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[11] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, R. Cheng-Yue, F. Mujica,
A. Coates, et al. An empirical evaluation of deep learning on highway driving. arXiv preprint arXiv:1504.01716,
2015.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on
Multimedia, pages 675–678, 2014.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.
Advances in Neural Information Processing Systems, 2012.

[14] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
[15] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks. In

Advances in Neural Information Processing Systems, pages 2924–2932, 2014.
[16] T. Raiko, H. Valpola, and Y. LeCun. Deep learning made easier by linear transformations in perceptrons. In

International Conference on Artificial Intelligence and Statistics, pages 924–932, 2012.
[17] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep nets.

arXiv preprint arXiv:1412.6550, 2014.

16

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 2015.

[19] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[21] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv preprint arXiv:1505.00387, 2015.
[22] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. arXiv preprint arXiv:1507.06228,

2015.
[23] D. Sussillo and L. Abbott. Random walk initialization for training very deep feedforward networks. arXiv

preprint arXiv:1412.6558, 2015.
[24] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in deep

learning. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1139–
1147, 2013.

[25] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances in
Neural Information Processing Systems, pages 3104–3112, 2014.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.

[27] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face
verification. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 1701–1708.
IEEE, 2014.

[28] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. arXiv preprint
arXiv:1411.4555, 2014.

[29] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural networks using dropconnect. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1058–1066, 2013.

[30] F. Wu, P. Hu, and D. Kong. Flip-rotate-pooling convolution and split dropout on convolution neural networks for
image classification. arXiv preprint arXiv:1507.08754, 2015.

[31] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer Vision–ECCV
2014, pages 818–833. Springer, 2014.

[32] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and J. Glass. Highway long short-term memory rnns for distant
speech recognition. arXiv preprint arXiv:1510.08983, 2015.

17

Appendix

A Resize
Passing the input from one layer to the next is complicated by the varying dimensions from one layer to the next. For
DropIn , we have an interaction between three layers: Ln−1, Ln, and Ln+1. Ln−1 has some number of channels,
cn−1, and some filter size hn−1 × wn−1. Ln is of size cn × hn × wn. Ln+1 expects input of size cn × hn × wn, and
so Ln−1 must be resized to the size of Ln in order to properly pass the input of Ln to Ln+1.

We implemented a Resize layer in Caffe. It can be placed after any layer (convolution, ReLU, fully connected,
etc.) and the new dimensions are specified there.

We tried several different methods for resizing Ln−1. Initially, to test our method, we used cropping and repeating
values to resize Ln−1. We assume that hi = wi with i = 1, . . . ,m where m is the number of layers in the network. If
hn < hn−1 (and therefore wn < wn−1), we simply crop each channel of Ln−1 starting from the upper left and going
to (hn, wn). If hn > hn−1, then we simply fill the rest of the filter with 0s. If hn = hn−1, then we keep all the filters
the same. If cn < cn−1, then we take the first cn channels and discard the rest. If cn > cn−1, then we repeat the last
filter of Ln−1cn − cn−1 times.

The second iteration of the Resize layer uses OpenCV’s Mat resize, and treats each filter as an image. It performs
one of several interpolation methods for increasing or decreasing the size of a filter. To increase the size of the filter
we use OpenCV’s bicubic interpolation method and for decreasing the size of a filter, we use OpenCV’s resampling
using pixel area relation. If cn < cn−1, we do the same as before, and if cn > cn−1 we randomly choose cn − cn−1

of Ln’s filters and add those to the end of Ln−1’s filters.
The following code is the implementation of the resize method on the CPU and GPU using C++ and CUDA.

resize.cpp
1 template <typename Dtype>
2 void ResizeLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
3 const vector<Blob<Dtype>*>& top) {
4 Blob<Dtype>* new_bottom= new Blob<Dtype>(bottom[0]->num(), bottom[0]->

channels(), bottom[0]->height(), bottom[0]->width());
5 new_bottom->CopyFrom((*bottom[0])); //copy only data
6 new_bottom->Resize(top[0]->num(), top[0]->channels(), top[0]->height(),

top[0]->width(), false);
7 const Dtype* new_bottom_data = new_bottom->cpu_data();
8 Dtype* top_data = top[0]->mutable_cpu_data();
9 caffe_copy(top[0]->count(), new_bottom_data, top_data);

10 free(new_bottom->mutable_cpu_data());
11 new_bottom=NULL;
12 }
13
14 template <typename Dtype>
15 void ResizeLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
16 const vector<bool>& propagate_down,
17 const vector<Blob<Dtype>*>& bottom){
18 if(propagate_down[0]){
19 Blob<Dtype>* new_top = new Blob<Dtype>(top[0]->num(), top[0]->channels

(), top[0]->height(), top[0]->width());
20 new_top->CopyFrom((*top[0]), true); //Copy only diff
21 new_top->Resize(bottom[0]->num(), bottom[0]->channels(), bottom[0]->

height(), bottom[0]->width(), true);
22 const Dtype* new_top_diff = new_top->cpu_diff();
23 Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
24 caffe_copy(bottom[0]->count(), new_top_diff, bottom_diff);
25 free(new_top->mutable_cpu_diff());

18

26 new_top = NULL;
27 }
28 }

resize.cu
1 template <typename Dtype>
2 void Blob<Dtype>::Resize(const int num, const int channels, const int height,

const int width, bool back) {
3 CHECK_EQ(num, shape_[0]);
4 CHECK_GE(channels, 0);
5 CHECK_GE(height, 0);
6 CHECK_GE(width, 0);
7 cv::Mat cv_orig(shape_[2],shape_[3],CV_32FC1);
8 cv::Mat cv_new;
9

10 srand (time(NULL));
11
12 if(num*channels*height*width == count_)
13 {
14 Reshape(num, channels, height, width);
15 return;
16 }
17 int index=0;
18 int oldIndex=0;
19 Dtype* stuff;
20 if(back)
21 stuff = mutable_cpu_data();
22 else
23 stuff = mutable_cpu_diff();
24
25 int old_count = shape_[0]*shape_[1]*shape_[2]*shape_[3];
26 int new_count = num*channels*height*width;
27 Dtype* stuff_copy = new Dtype[old_count];
28
29 for(int i=0; i<old_count; i++)
30 {
31 stuff_copy[i] = stuff[i];
32 }
33 delete[] stuff;
34
35 //Reset data or diff pointer memory
36 if(back)
37 {
38 diff_.reset(new SyncedMemory(new_count * sizeof(Dtype)));
39 stuff = mutable_cpu_diff();
40 }
41 else
42 {
43 data_.reset(new SyncedMemory(new_count * sizeof(Dtype)));
44 stuff = mutable_cpu_data();
45 }
46
47 int INTER_METHOD=CV_INTER_CUBIC; //grow

19

48 if (width < shape_[3])
49 INTER_METHOD=CV_INTER_AREA; //shrink
50
51 int minChannels = channels;
52 if(shape_[1]<minChannels)
53 minChannels=shape_[1];
54 for(int n=0; n<shape_[0]; n++)
55 {
56 //copy the first channels over
57 for(int c=0; c<minChannels; c++)
58 {
59 for(int h=0; h<shape_[2]; h++)
60 {
61 for(int w=0; w<shape_[3]; w++)
62 {
63 index = ((n*shape_[1]+c)*shape_[2]+h)*shape_[3] + w;
64 cv_orig.at<float>(h,w) = stuff_copy[index];
65 }
66 }
67 cv::resize(cv_orig, cv_new, cvSize(width, height), INTER_METHOD);
68 for(int h=0; h<height; h++)
69 {
70 for(int w=0; w<width; w++)
71 {
72 index = ((n*channels+c)*height+h)*width+w;
73 stuff[index] = cv_new.at<float>(h,w);
74 }
75 }
76 }
77 if(shape_[1] < channels) //Randomly copy channels_ to fill the new channel

size
78 {
79 for(int c=shape_[1]; c<channels; c++)
80 {
81 int randChan = rand() % shape_[1];
82 for(int h=0; h<height; h++)
83 {
84 for(int w=0; w<width; w++)
85 {
86 index = ((n*channels+c)*height+h)*width+w;
87 oldIndex = ((n*channels+randChan)*height+h)*width+w;
88 stuff[index] = stuff[oldIndex];
89 }
90 }
91 }
92 }
93 }
94
95 shape_[1] = channels;
96 shape_[2] = height;
97 shape_[3] = width;
98 count_ = num*channels*height*width;
99 capacity_ = count_;

20

100
101
102 delete[] stuff_copy;
103 }

B DropIn
The following code is the implementation of DropIn on the GPU using C++ and CUDA.

dropin.cu
1 #include <algorithm>
2 #include <limits>
3 #include <vector>
4 #include <iostream>
5
6 #include "caffe/common.hpp"
7 #include "caffe/layer.hpp"
8 #include "caffe/syncedmem.hpp"
9 #include "caffe/util/math_functions.hpp"

10 #include "caffe/vision_layers.hpp"
11
12 namespace caffe {
13
14 template <typename Dtype>
15 __global__ void DropinForward(const int n, const Dtype* in, const Dtype*

prev_in,
16 const unsigned int* mask, const unsigned int threshold, const Dtype scale,

const Dtype scale2,
17 Dtype* out) {
18 CUDA_KERNEL_LOOP(index, n) {
19 // out[index] = in[index] * (mask[index] > threshold) + prev_in[index] * (

mask[index] <= threshold);
20 out[index] = in[index] * (mask[index] > threshold) * scale
21 + prev_in[index] * (mask[index] <= threshold) * scale2;
22 }
23 }
24
25 template <typename Dtype>
26 void DropinLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
27 const vector<Blob<Dtype>*>& top) {
28 // std::cout<<"Forward 1\n";
29 const Dtype* bottom_data = bottom[0]->gpu_data();
30 const Dtype* prev_bottom_data = bottom[1]->gpu_data();//prev_bottom_blob->

gpu_data();
31 const int count = bottom[0]->count();
32 Dtype* top_data = top[0]->mutable_gpu_data();
33
34 if (dropinGradually_) {
35 ++dropin_iter_;
36 threshold_ = std::max(0.0001, 1.0 - float(dropin_iter_) / length_);
37 uint_thres_ = UINT_MAX * threshold_;
38 if (maxScale2_ <= 1.0) {
39 scale_ = 1.0;

21

40 scale2_ = 1.0;
41 } else {
42 scale_ = std::min(maxScale2_, float(1. / (1. - threshold_)));
43 scale2_ = std::min(maxScale2_, float(1.0 / threshold_));
44 }
45
46 if (threshold_ > 0.99) {
47 caffe_copy(count, prev_bottom_data, top_data);
48
49 } else if (threshold_ > 0.01) {
50 int count2 = threshold_ * count;
51 if (scale_ > 1.0) {
52 caffe_gpu_scale(count2, scale2_, prev_bottom_data, top_data);
53 caffe_gpu_scale(count-count2, scale_, bottom_data+count2, top_data+

count2);
54 } else {
55 caffe_copy(count2, prev_bottom_data, top_data);
56 if (top_data != bottom_data) caffe_copy(count-count2, bottom_data+

count2, top_data+count2);
57 }
58
59 } else {
60 if (top_data != bottom_data) caffe_copy(count, bottom_data, top_data);
61 }
62 } else {
63 unsigned int* mask =
64 static_cast<unsigned int*>(rand_vec_.mutable_gpu_data());
65 caffe_gpu_rng_uniform(count, mask);
66
67 // NOLINT_NEXT_LINE(whitespace/operators)
68 DropinForward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(
69 count, bottom_data, prev_bottom_data, mask, uint_thres_, scale_,

scale2_, top_data);
70 CUDA_POST_KERNEL_CHECK;
71 }
72 }
73
74 template <typename Dtype>
75 __global__ void DropinBackward(const int n, const Dtype* in_diff,
76 const unsigned int* mask, const unsigned int threshold, const Dtype scale,

const Dtype scale2,
77 Dtype* out_diff, Dtype* prev_out_diff) {
78 CUDA_KERNEL_LOOP(index, n) {
79 prev_out_diff[index] = in_diff[index] * (mask[index] <= threshold) *

scale2;
80 out_diff[index] = in_diff[index] * (mask[index] > threshold) * scale;
81 }
82 }
83
84 template <typename Dtype>
85 void DropinLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
86 const vector<bool>& propagate_down,
87 const vector<Blob<Dtype>*>& bottom) {

22

88
89 if (propagate_down[0]) {
90 const Dtype* top_diff = top[0]->gpu_diff();
91 Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
92 Dtype* prev_bottom_diff = bottom[1]->mutable_gpu_diff();
93 const int count = bottom[0]->count();
94
95 if (dropinGradually_) {
96 if (threshold_ > 0.99) {
97 caffe_copy(count, top_diff, prev_bottom_diff);
98 CUDA_CHECK(cudaMemset(bottom_diff, 0.0, sizeof(Dtype)*count));
99

100 } else if (threshold_ > 0.01) {
101 int count2 = threshold_ * count;
102 if (scale_ > 1.0) {
103 caffe_gpu_scale(count2, scale2_, top_diff, prev_bottom_diff);
104 caffe_gpu_scale(count-count2, scale_, top_diff+count2, bottom_diff+

count2);
105 } else {
106 caffe_copy(count2, top_diff, prev_bottom_diff);
107 if (top_diff != bottom_diff) caffe_copy(count-count2, top_diff+

count2, bottom_diff+count2);
108 }
109 CUDA_CHECK(cudaMemset(prev_bottom_diff+count2, 0.0, sizeof(Dtype)*(

count-count2)));
110 CUDA_CHECK(cudaMemset(bottom_diff, 0.0, sizeof(Dtype)*count2));
111 } else {
112 if (top_diff != bottom_diff) caffe_copy(count, top_diff, bottom_diff);
113 CUDA_CHECK(cudaMemset(prev_bottom_diff, 0.0, sizeof(Dtype)*count));
114 }
115 } else {
116 const unsigned int* mask =
117 static_cast<const unsigned int*>(rand_vec_.gpu_data());
118
119 // NOLINT_NEXT_LINE(whitespace/operators)
120 DropinBackward<Dtype><<<CAFFE_GET_BLOCKS(count),
121 CAFFE_CUDA_NUM_THREADS>>>(
122 count, top_diff, mask, uint_thres_, scale_, scale2_, bottom_diff,

prev_bottom_diff);
123 CUDA_POST_KERNEL_CHECK;
124 }
125 }
126 }
127
128 INSTANTIATE_LAYER_GPU_FUNCS(DropinLayer);
129
130 } // namespace caffe

23

C Solver Parameters
The following is an example of the solver prototxt file used in the CIFAR experiment.

solver.prototxt
1 n e t : "conv11_dropin.prototxt"
2 t e s t i t e r : 100
3 t e s t i n t e r v a l : 100
4 momentum : 0 . 9
5 w e i g h t d e c a y : 0 .004
6 # The l e a r n i n g r a t e p o l i c y
7 l r p o l i c y : "fixed"
8 # The base l e a r n i n g r a t e , momentum and t h e we ig h t decay of t h e ne twork .
9 b a s e l r : 0 . 002

10 gamma : 0 . 2 5
11 # D i s p l a y e v e r y 200 i t e r a t i o n s
12 d i s p l a y : 100
13 # The maximum number o f i t e r a t i o n s
14 m a x i t e r : 24000
15 # s n a p s h o t i n t e r m e d i a t e r e s u l t s
16 s n a p s h o t : 24000
17 s n a p s h o t p r e f i x : "snapshots/dropin24K"
18 # s o l v e r mode : CPU or GPU
19 s o l v e r m o d e : GPU

24

	Introduction
	Related Work
	Initialization of Network Weights
	Developing New Architecture
	Regularizing the Network

	DropIn Method
	Model Description
	Implementation

	Experiments
	MNIST
	CIFAR-10
	ImageNet / AlexNet
	ImageNet / VGG
	Using DropIn for Regularization

	How to Easily Determine a Good Architecture
	Discussion & Conclusion
	Appendix
	Resize
	DropIn
	Solver Parameters

